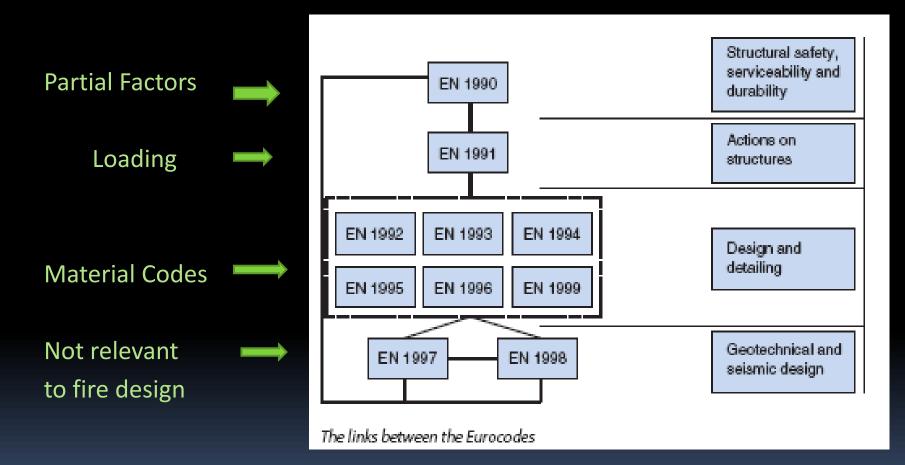
IBCI Conference 2010 Thursday 25th March 2010 FIRE DESIGN AND EURO CODES

CONTENTS OF PRESENTATION

- \circ Brief History of the Structural Eurocodes
- $\,\circ\,$ Key Aspects of the Eurocode System
- $_{\odot}$ Current Status of Eurocodes in Ireland
- $\,\circ\,$ Overview of key fire sections of the Eurocodes
- Case Studies

BRIEF HISTORY OF EUROCODES

- Treaty of Rome 1976 Removal of artificial barriers to trade
- European Commission 1980 requirement for harmonized design standards – started the Eurocode drafting process
- 1989 EC transferred responsibility to CEN [Comite Europeen de Normalisation]
- $\circ~$ CEN Committee TC250 and subcommittees wrote the standards
- ENV+NAD \rightarrow IS EN + National Annexes
- Period of co-existence with national standards
- $\circ~$ 58 Eurocodes in total published between 2002 and 2007
- CEN remain responsible for revisions
- o 30 YEAR PROCESS


KEY ASPECTS OF EUROCODE SYSTEM (OBJECTIVES)

- o Common design criteria
- Provide a common understanding
- Facilitate the marketing and use of structural components and kits in EU Member States;
- Facilitate the marketing and use of materials and constituent products, the properties of which enter into design calculations;
- Be a common basis for research and development, in the construction industry;
- Allow the preparation of common design aids and software;
- Increase the competitiveness of the European civil engineering firms, contractors, designers and product manufacturers in their global activities

KEY ASPECTS OF EUROCODE SYSTEM

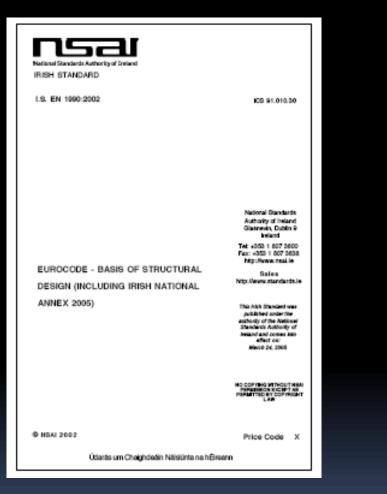
KEY ASPECTS OF EUROCODE SYSTEM

- Support National Regulations (are subservient to)
- National Regulations set Nationally Determined Parameters (NDP)
- Principals (P) and Application Rules
- Normative Annexes
- Informative Annexes
- National Annex specifies NDPs and indicates which Informative Annexes may be used
- Non-contradictory complementary information (NCCIs)
- Contradictory National Codes to be withdrawn by March 2010

CURRENT STATUS OF EUROCODES IN IRELAND

Eurocode Part	Title	National Annex Publication Status
IS EN 1990:2002	Basis of structural design	Published March 2005
IS EN 1991-1-1:2002	Actions on structures. General actions. Densities, self- weight, imposed loads for buildings	Published March 2005
IS EN 1991-1-2:2002	Actions on structures. General actions. Actions on structures exposed to fire	Published Feb 2007
IS EN 1992-1-2:2004	Design of concrete structures. Structural Fire design	Published 13 January, 2010
IS EN 1993-1-2:2005	Design of steel structures. General rules. Structural fire design	NA out for public consultation 19Feb 2010
IS EN 1994-1-2:2005	Design of composite steel and concrete structures. General rules. Structural fire design	NA out for public consultation 19Feb 2010
IS EN 1995-1-2:2004	Design of timber structures. General. Structural fire	NA out for public consultation 19Feb 2010
IS EN 1996-1-2:2005	Design of masonry structures. General rules. Structural fire design	NA out for public consultation o6Nov 2009
IS EN 1999-1-2:2007	Design of aluminium structures s. General rules. Structural fire design	NA out for public consultation 19Feb 2010

CURRENT STATUS OF EUROCODES IN IRELAND


EXTRACT FROM EU COMISSION WEBSITE

"Under the Public Procurement Directive, it is mandatory that Member States accept designs to the EN Eurocodes. The EN Eurocodes will become the standard technical specification for all public works contracts. If proposing an alternative design one must demonstrate that is technically equivalent to an EN Eurocode solution.

As the National Standardisation Bodies are not expected to maintain the withdrawn National standards in practice, there will be little option but to use the EN Eurocodes. It is extremely likely that pressures from international clients and contractors, as well as other stakeholders like the insurance industry, will lead to their more rapid application for private construction"

National choice is allowed in EN 1990 through :

- A1.1(1)
- A1.2.1(1)
- A1.2.2 (Table A1.1)
- A1.3.1(1) (Tables A1.2(A) to (C))
- A1.3.1(5)
- A1.3.2 (Table A1.3)
- A1.4.2(2)

- IS EN 1990 used (together with IS EN 1991) with all other IS EN codes
- Sets out the principles for safety, serviceability and durability
- Provides the safety factors for actions and combination action effects (γ partial factors, ψ combination factors)
- Sets durability criteria
- Limit state code: FIRE is an Ultimate Limit state
- Material independent code (differs from BS codes)

 \circ $E_d \leq R_d$

 \odot Fire = "Accidental Design Situation" , so

$\circ E_{fi,d} = G_{d} + \psi_{1} Q_{k,1} + \psi_{2} Q_{k,2}$

Therefore γ_G and γ_F taken as unity (for cold design γ_G = 1.35 and γ_F = 1.5) reflecting the low probability of fire and full load and also reflecting the acceptance of greater levels of damage in fire conditions

 $\psi_{1_{\prime}}$ and ψ_{2} are combination factors

Action	Ψo	Ψ1	Ψ2
Imposed loads in buildings, category (see EN1991-1-1)			
Category A: domestic, residential areas	0,7	0,5	0,3
Category B: office areas	0,7	0,5	0,3
Category C: congregation areas	0,7	0,7	0,6
Category D: shopping areas	0,7	0,7	0,6
Category E: storage areas	1,0	0,9	0,8
Category F: traffic area,			
Vehicle weight $< $ or $= 30$ Kn	0,7	0,7	0,6
Category G: traffic area,			
30Kn $<$ vehicle weight $<$ or $= 160$ Kn	0,7	0,5	0,3
Category H: roofs	0,6	0,0	0,0
Snow loads on buildings (see EN 1991-1-3)	0,5	0,2	0,0
Wind loads on buildings (see EN 1991-1-4)	0,6	0,2	0,0
Temperature (non-fire) in buildings (see EN 1991-1-5)	0,6	0,5	0,0

Table NA. 2 - Values of ψ factors for buildings

EXAMPLES (Fire Limit State Loading)

- OFFICE BUILDING
- $E_{fi,d} = G_d + 0.5 Q_L$
- SHOP
 - $E_{fi,d} = G_d + 0.7 Q_L$

where Q_L = live load and wind is not dominant load

where Q_L = live load and wind is not dominant load

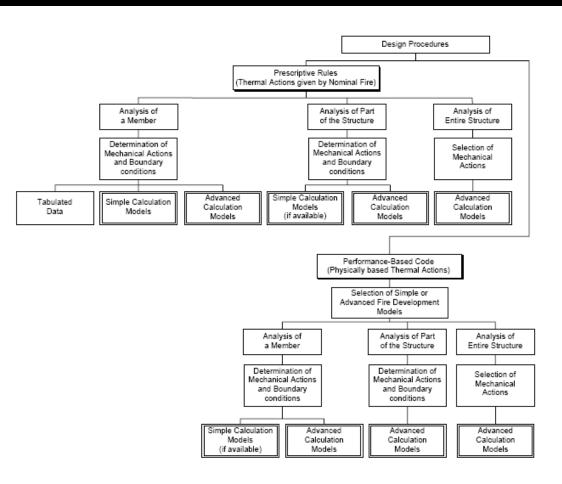
- Fire Limit State Simplified Analysis
- Reduction Factor $\eta_{fi} = (G_k + \psi_1 Q_k)/(\gamma_G G_k + \gamma_Q Q_k)$

•
$$E_{d,fi} = \eta_{fi} \cdot E_d$$

•
$$Q_k/G_k = 2$$
, $\gamma_G = 1.35$, $\gamma_Q = 1.5$, $\psi_1 = 0.5$
 $\eta_{fi} = 0.46$

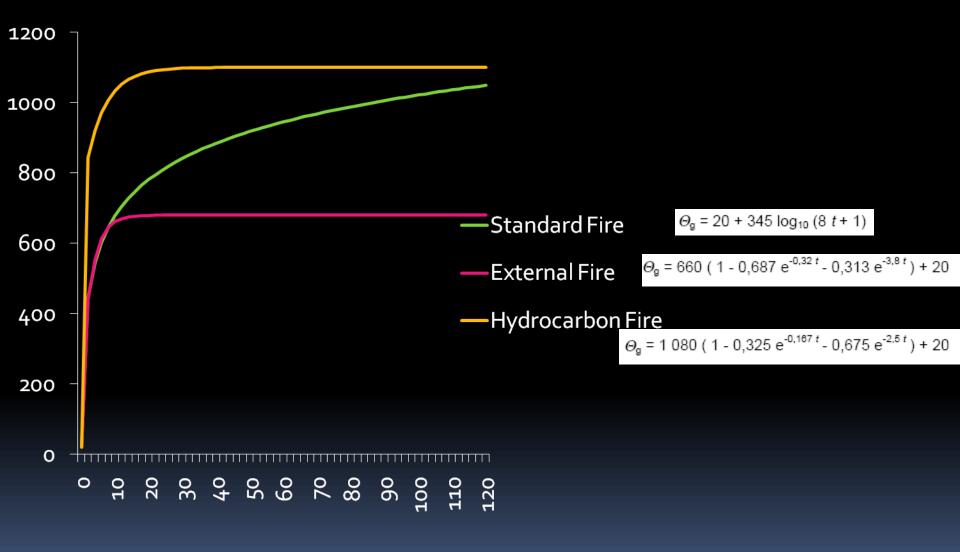
Design Working Life category	Indicative design working life (years)	Examples
1	10	Temporary structures (1)
2	10 - 25	Replaceable structural parts, e.g. gantry girders, bearings
3	15 - 30	Agricultural and similar structures
4	50	Building structures and other common structures
5	100 (2)	Monumental building structures, bridges and other civil engineering structures
(1) Structures or pa	rts of structures th	at can be dismantled with a view to being
re-used should not b	e considered as ten	iporary.
(2) Working life for of the clients	r bridges of 120 yea	ars may be used subject to the requirement

Table NA.1 - Indicative Design Working Life



EUROCODE 1 (LOADINGS) IS EN 1991-1-2:2002 AND NATIONAL ANNEX (2002)

Hatanai Sandardi Autority of Doland IRISH STANDARD LS. EN 1991-1-2:2002	KC9 13.220.50 91.010.50	NA to I.S. EN 1891-1-2:2002
EUROCODE 1: ACTIONS ON STRUCTURES - PART 1-2: GENERAL ACTIONS - ACTIONS ON STRUCTURES EXPOSED TO FIRE	National Giandarde Aktority of Inland Gianawak, Dablin S Inland Tet 4050 1 607 5608 http://www.mail.in Solina Not: Weene standards.in Not: Weene standards.in Phis Adds Standard was published ander the authory of the Wathour Standard and comes into effect our January 17, 2009	Irish National Annex to Europode 1 – Actions on structures – Part 1-2: General actions – Actions on structures exposed to fire
	NO COPITING WITHOUT HEAL TRADERION & CLAPT AN PRANTITIES AT COPIESANT LAN	
Ф нали 2002 Ódarás um Chaighdeáin Náisiúnta na hÉirean	Price Code G	


Structural Fire Design Procedure

Step 1	 Design Fire Scenario (EC1) Compartment Fire Localised fire
Step 2	 Design Fire (EC1) Nominal Fire Curves Natural Fire Models
Step 3	 Temperature Analysis (EC 2 to 6, 9) Radiative and Convective transfer Location/orientation of member
Step 4	Mechanical Analysis (EC o, 2 to 6, 9)• Time Domain $t_{fi,d} \ge t_{fi,requ}$ • Strength Domain $R_{fi,d,t} \ge E_{fi,d,t}$ • Temperature Domain $\Theta_d \le \Theta_{cr,d}$

NOMINAL TIME-TEMP CURVES

Maurice Johnson & Partners

Nominal Fire Curves – Standard Fire

- Option 1 = TGDB Table A2
- Option 2 = Equivalent time of fire exposure per NA.5.3 Annex F (NA.2.1.clause)
- Option 3 = Table 26/27 of BS9999 (also a time-equivalent based approach)

Nominal Fire Curves – Equivalent Time of Fire Exposure NA.5.3

- Only applicable where design of members is based on tabulated data or simplified rules (i.e. not applicable in combination with complex structural response modelling)
- Not applicable to timber or composite steel/concrete
- $\mathbf{t}_{e,d} = \beta \cdot \mathbf{q}_{f,d} \cdot \mathbf{K}_b \cdot \mathbf{w}_f$

Where $q_{f,d}$ = design fire load density per NA.5.2

- K_b = conversion factor for thermal properties of boundaries
- w_f = ventilation factor
 - $= (6.0/H)0.3[0.62 + 90(0.4 \alpha_v)4/1 + b_v \cdot \alpha_h)] \ge 0.5 \qquad \text{or}$
 - = $O^{0.5}$. A_f/A_t for small compartments of less than 100sqm
- B = Multipication factor per Table NA.8 taking account of height of building and usage
- NA recommends sensitivity analysis vs amount of ventilation

EQUIVALENT TIME OF FIRE EXPOSURE NA.5.3 EXAMPLE

Equivalent Time of Fire Exposure according to Annex F of Irish National Annex to IS EN 1991-1-2:2002 EXAMPLE - HOTEL BEDROOM in BUILDING 25m High (40sqm, 3m high with 7.2 sqm of glazing)

Location	Scenario	Compartment height H (m)	Compartment floor area Af (sqm)		Area of horizontal openings in the compartment roof A ₆ (sqm)	α _v (to be in range 0.025 to 0.25)	¢,	b _y (to not le then 10	000 t 555 t	Ventilation factor w _t (to be not less than 0.5)	Thermal Inertia b (based on Anner: A and Table A.2 of PD7974;Part3	Conversion factor for thermal properties of compartment boundaries k _e (min.sqm/M)	Multiplication risk factor β associated with height and use per Table NA.8	Fire load density q ₀ , according to occupany in Table NA.2 (80% fractile)	Additional Fire loads from the construction elements, linings and finishes	Combustion factor m	Factor to take account of sprinklers y ₁	Equivalent time of five exposure for frame $T_{e,i} =$ $Q_{ei} \lambda_e N_i \beta$	TGOB Table 42
Unsprinklered hotel bedroom	100 % glazing failed	3	4	7.2	o	0.18	0	34.5	595 1	1.02267221	2510	0.055	1	570	57	1	1	35	90
Unsprinklered hotel bedroom	50% glazing failed	3	4	3.6	0	0.09	0	23.64	488 1	1.78659848	2510	0.085	1	570	57	1	1	62	90
Unsprinklered hotel bedroom	25% glazing failed	3	4	1.8	0	0.045	0	18.0	997 2	2.52311605	2510	0.055	1	570	57	1	1	87	90
Sprinklered hotel bedroom	100 % glazing failed	3	4	7.2	0	0.18	0	34.3	595 1	1.02267221	2510	0.055	1	570	57	1	0.61	22	90
Sprinklered hotel bedroom	50% glazing failed	3	4	3.6	0	0.09	0	23.64	488 1	1.78659848	2510	0.085	1	570	57	1	0.61	38	90
Sprinklered hotel bedroom	25 % gluzing failed	3	4	1.8	o	0.045	0	18.0	997 2	2.52311605	2510	0.085	1	570	57	1	0.61	53	90

EQUIVALENT TIME OF FIRE EXPOSURE - BS9999

Risk profile	Minimum pe	Minimum periods of fire resistance, in minutes ^{B)}										
	Height ^{C)} of top occupied storey above access level											
,	Not more than 5 m	Not more than 11 m	Not more than 18 m	Not more than 30 m	Not more than 60 m	More than 60 m						
A1 Offices	15 30	30 30	30 30	60 60	75 120 90	90 120 90						
A2	30 D)	30	60	90	120	150						
A3	60	60	90	120	300	300						
44 E)	~				_	-						
BI Assundy	30 30	30 60	30 🚧	60 60	60 120 90	75 120 90						
32 (Shops)	30 30	30 60	60 60	75 60	90 120 90	120 120 90.						
33	30	45	75	105	135	180						
34 E)	_			_	_							
(1 F)	45 ^{G)}	60	75	75	90	105						
Ci2 ^{F)}	60 ^{G)}	90	105	120	-							
Cii1 or Ciii1	30	30	30	45	60	60						
Cii2 or Ciii2	30	45	60	75	90	105						
C3 ^{E)}	_	_										
C4 E)		_	_	_								

Fire resistance periods for elements of structure

NOTE 1 For occupancy characteristic A covering storage and car parks, and all basements, the fire resistance periods are as given in Table 25.

NOTE 2 Variation of the risk profile by the addition of sprinklers conforming to BS EN 12845 (new systems) or BS 5306-2 (existing systems) can be used to reduce the fire resistance as described in 6.5.

SPRINKLERED

Table 26

Table 26/27 - Well ventilatedcompartment

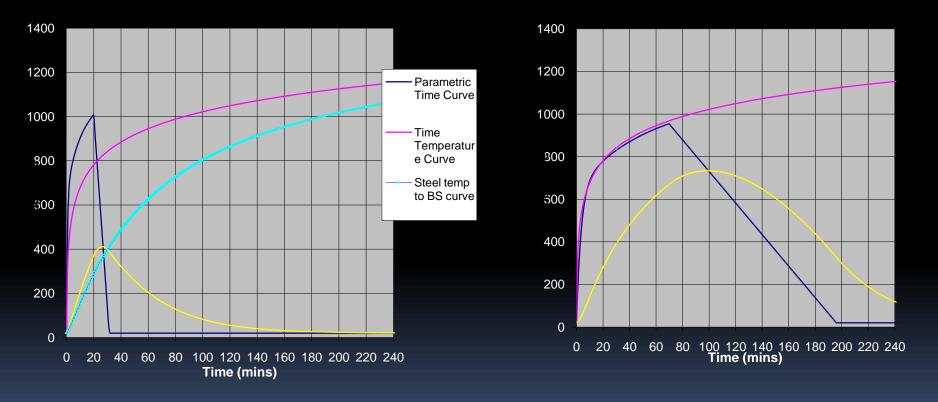
Greater flexibility ,

Reduced ratings in some circumstances, increased in other circumstances
Based on a combination of Deterministic Analysis (time equivalent based on BSEN parametric fires) and Probabilistic Risk/Consequence Analysis (Risk = Øfrequency x Likelihood x Consequence)
Height bands are related to fire-fighting height thresholds: i.e. ladder, high reach, dry riser, wet riser

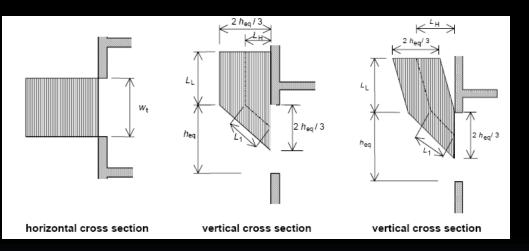
Applicable only to above ground storeys

- 1. Parametric time temperature curves per Annex A
- 2. External members per Annex B
- 3. Localised fire sources per National Annex
- 4. Advanced fire modelling

1. Parametric T-t Curves (Annex A + NA.4)


 $\begin{array}{l} \text{heating phase} & \Theta_{g} = 20 + 1\,325\,(\,1 - 0,324\,\mathrm{e}^{-0,2t^{*}} - 0,204\,\mathrm{e}^{-1,7t^{*}} - 0,472\,\mathrm{e}^{-19t^{*}}\,\,) \\ \\ \text{cooling phase} & \Theta_{g} = \Theta_{\max} - 625\,(\,t^{*} - \,t^{*}_{\max}\,\cdot\,x) \\ \\ \Theta_{g} = \Theta_{\max} - 250\,(\,3 - \,t^{*}_{\max}\,\,)\,(\,t^{*} - \,t^{*}_{\max}\,\cdot\,x\,) \\ \\ \Theta_{g} = \Theta_{\max} - 250\,(\,t^{*} - \,t^{*}_{\max}\,\cdot\,x\,) \end{array}$

- Boundary properties, ventilation conditions, fire load density and fire growth rate all taken into account
- Easily set up on spreadsheet
- No allowance for height/risk!!! i.e. no β factor


Parametric T-t Curves (Annex A + NA.4)

2. External Members (e.g. balcony walkway supports, Central Bank Macalloy bars)

Calculates flame shapes and temperatures, maximum compartment temperature, radiation and convection parameters Use configuration factors to calculate radiative heat transfer

Eurocodes 2, 3, 4, 5, 6, 9

Material specific codes
Tabulated data
Heat transfer analysis
Mechanical analysis at elevated temperature

Until the National Annex is available, publication of this European Standard is solely for educational/training purposes and this standard should not be used in project design until the relevant National Annex is available.

Figure 1 : Alternative design procedures

	Tabulated data	Simplified calculation methods	Advanced calculation models
Member analysis The member is considered as isolated. Indirect fire actions are not considered, except those resulting from thermal gradients	YES - Data given for standard fire only, 51(1) - In principle data could be developed for other fire curves	YES - standard fire and parametric fire, 4.2.1(1) - temperature profiles given for standard fire only, 4.2.2(1) - material models apply only to heating rates similar to standard fire, 4.2.4.1(2)	YES, 4.3.1(1)P Only the principles are given
Analysis of parts of the structure Analysis of parts of the structure Indirect fire actions within the sub- assembly are considered, but no time-dependent interaction with other parts of the structure.	NO	YES - standard fire and parametric fire, 4.2.1(1) - temperature profiles given for standard fire only, 4.2.2(1) - material models apply only to heating rates similar to standard fire, 4.2.4.1(2)	YES 4.3.1(1)P Only the principles are given
Global structural analysis Analysis of the entire structure. Indirect fire actions are considered throughout the structure	NO	NO	YES 4.3.1(1)P Only the principles are given

- Separating elements which are not load-bearing: Integrity (Criterion E) and Insulation (Criterion I) EI
- Load-bearing and not separating : Mechanical Resistance (Criterion R) R
 - Nominal for specified duration
 - Parametric for entire duration including cooling phase
- Load-bearing and separating : Criteria R, E and I REI
- Example : Wall REI60, Column R60
- Letters "ef" and "HC" added if the performance is in respect of the external fire curve or the hydrocarbon curve e.g. REI-ef, REI-HC

- Method 1 tabulated data –(most likely to be used except where there are specific issues)
 - Applies to standard fire curves only
 - Subject to National Annex
 - Based on Normal Wt Concrete and silicious aggregates
- Method 2 Simple calculation methods per Annexes
 B to E (informative) Section 4.2 of code
- Method 3 Advanced calculation methods- Section 4.3 of code (limited real design information in the code)
- Method 4 Fire tests

CONCRETE : Eurocode 2 Part 1-2 Method 1 – tabulated data

Columns to Eurocode

 μ_{fi} = ratio of design axial load at fire limit state with design resistance at normal temperature

Columns to BS8110

Standard fire	Colum	Minimum dimensions (mm) Column width b _{min} /axis distance a of the main bars								
resistance	Column ex	Column exposed on more than one side								
	μ _{fi} = 0.2	$\mu_{\rm fi} = 0.5$	$\mu_{\rm fi} = 0.7$	$\mu_{\rm fi} = 0.7$						
1	2	3	4	5						
R 30	200/25	200/25	200/32 300/27	155/25						
R 60	200/25	200/36 300/31	250/46 350/40	155/25						
R 90	200/31 300/25	300/45 400/38	350/53 450/40**	155/25						
R 120	250/40 350/35	350/45** 450/40**	350/57** 450/51**	175/35						
R 180	350/45**	350/63**	450/70**	230/55						
R 240	350/61**	450/75**	-	295/70						

Minimum 8 bars

For prestressed columns the increase of axis distance according to 4.2.2. (4) should be noted.

Nature of construction as	Minin	Minimum dimensions excluding any combustible finish for a fire resistance of							
		0.8 h	1 h	1.5 h	12	3 h	45		
Fully exposed:			2022	2120.	222	2012	12.22		
dense concrete	Width Cover-	150 20	200 25	250 30	300 35	400 35	450 35		
lightweight concrete	Width Cover-	150 20	160 20	200 25	240 35	320 35	360 35		
50 % exposed:	Cover-	20	20	20	30	30	30		
dense concrete	Width Cover-	125 20	160 25	200 25	240 25	300 30	350 35		
lightweight concrete	Width Cover•	125	130	160	25 185 25	250 30	275 30		
One face exposed:	00/41-	~~					~		
dense concrete	Thickness Cover*	100 20	120 25	140 25	160 25	200 25	240 25		
lightweight concrete	Thickness Cover-	100	100	115 20	130 25	160 25	190 25		

CONCRETE : Eurocode 2 Part 1-2 Method 1 – tabulated data (continued)

Beams to Eurocode

Table 5.5: Minimum dimensions and axis distances for simply supported beams made with reinforced and prestressed concrete

Standard fire resistance			Min	imum dir	mensions (mm)				
	Possible co	mbinatio			Web thickness b _w					
	where a distance a	a is the a and <i>b</i> _{min} bean	is the w		Class WA	Class WB	Class WC			
1	2	3	4	5	6	7	8			
R 30	b _{min} = 80 a = 25	120 20	160 15*	200 15*	80	80	80			
R 60	b _{min} = 120 a = 40	160 35	200 30	300 25	100	80	100			
R 90	b _{min} = 150 a = 55	200 45	300 40	400 35	110	100	100			
R 120	b _{min} = 200 a = 65	240 60	300 55	500 50	130	120	120			
R 180	b _{min} = 240 a = 80	300 70	400 65	600 60	150	150	140			
R 240	b _{min} = 280 a = 90	350 80	500 75	700 70	170	170	160			
below)	+ 10mm	(see n			1					
For prestresse	ed beams the	increase	e of axis	distanc	e according to	5.2(5) should	d be noted.			
	a _{ed} is the axis distance to the side of beam for the corner bars (or tendon or wire) of beams with only one layer of reinforcement. For values of b _{min} greater than that									

given in Column 4 no increase of a_{sd} is required.

Normally the cover required by EN 1992-1-1 will control

Beams to BS8110

Table 4.3 - Concrete beams

Nature of construction and materials		Minimum dimensions excluding any combustible finish for a fire resistance of:					
		0.5 h	1 h	1.5 h	2 h	8 h.	4 h
Reinforced concrete (simply supported):		2012	2022	22.22	222	1120	10.00
dense concrete	Width Cover-	80 20	120 30	150 40	200 50	240 70	280 80
lightweight concrete	Width Cover*	80 15	100 20	130 35	160 45	200	250
Reinforced concrete (continuous): dense concrete	Width	80	80	120	150	200	240
	Cover-	20	20	35	50	60	70
lightweight concrete	Width Cover-	60 15	80 20	90 25	110 35	150 45	200 55
Prestressed concrete (simply supported):							
dense concrete	Width Cover-	100 25	120 40	150 55	200 70	240 80	280 90
lightweight concrete	Width Cover•	80 25	110 30	130 45	160 55	200	250 75
Prestressed concrete (continuous):							
dense concrete	Width Cover-	80 20	100 30	120 40	150 55	200	240 80
lightweight concrete	Width Cover-	80 20	90 25	100	125 45	150	200

CONCRETE : Eurocode 2 Part 1-2 Method 1 – tabulated data (continued)

Slabs to Eurocode

Slabs to BS8110

Table 4.4 — Plain soffit concrete floors

Table 5.8: Minimum dimensions and axis distances for reinforced and prestressed
concrete simply supported one-way and two-way solid slabs

Standard fire resistance	Minimum dimensions (mm)					
	slab thickness	one way	axis-distance a ay two way:			
	h _s (mm)	,	$l_{\rm F}/l_{\rm x} \leq 1.5$	1,5 < <i>l_y/l_x</i> ≤ 2		
1	2	3	4	5		
REI 30	60	10*	10*	10*		
REI 60	80	20	10*	15*		
REI 90	100	30	15×	20		
REI 120	120	40	20	25		
REI 180	150	55	30	40		
REI 240	175	65	40	50		

Is and I are the spans of a two-way slab (two directions at right angles) where I is the longer span.

For prestressed slabs the increase of axis distance according to 5.2(5) should be noted.

The axis distance a in Column 4 and 5 for two way slabs relate to slabs supported at all four edges. Otherwise, they should be treated as one-way spanning slab.

* Normally the cover required by EN 1992-1-1 will control.

Nature of construction and materials		Minimum dimensions excluding any combustible finish for a fire resistance of:						
						3 h	4 2	
		2022	2012	222	10.00	2022	2022	
Reinforced concrete (simply supported):				1		1	1	
dense concrete	Thickness	75	95	110	125	150	170	
	Cover-	15	20	25	35	45	55	
lightweight concrete	Thickness	15 70	90	105	115	135	150	
-00	Cover-	15	95 20 90 15	20	25	35	45	
Reinforced concrete (continuous):								
dense concrete	Thickness	75	95	110	125	150	170	
dense concrete	Covers	15	20	20	25	35	45	
lightweight concrete	Thickness	70	00	105	115	135	150	
neuroseien concrete	Cover•	15	90 15	20	20	25	35	
Design of the second	Cover-	10	10	20	20	40	30	
Prestressed concrete (simply				1		1	1	
supported):								
dense concrete	Thickness	75	95 25	110	125	150	170	
	Cover-	20	25	30	40	55	65	
lightweight concrete	Thickness	70	90 20	105	115	135	150	
	Cover-	20	20	30	35	45	60	
Prestressed concrete (continuous):				1		1	1	
dense concrete	Thickness	75	95 20	110	125	150	170	
	Cover-	20	20	25	35	45	55	
lightweight concrete	Thickness	70	90	105	115	135	150	
	Cover*	20	20	25	30	35	45	
Oover is expressed here as cover to main reinfor								

CONCRETE : Eurocode 2 Part 1-2 Method 1 – tabulated data (continued)

Load-bearing walls to Eurocode

Load-bearing walls to BS8110

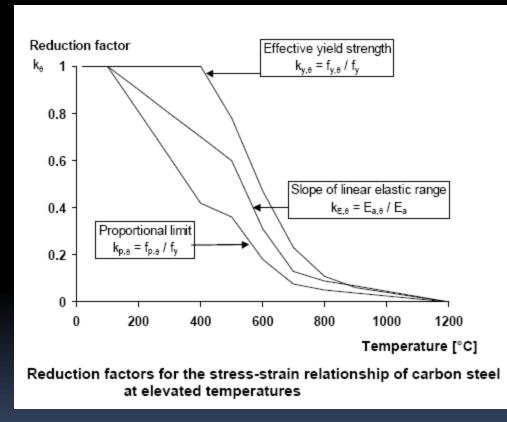
Table 5.4: Minimum dimensions and axis distances for load-bearing reinforced concrete walls

Standard fire resistance	Minimum dimensions (mm) Wall thickness/axis distance for						
	μ _l i =	μη = 0,35 μη = 0,7					
	wall exposed	wall exposed	wall exposed	wall exposed			
	on one side	on two sides	on one side	on two sides			
1	2	3	4	5			
REI 30	100/10*	120/10*	120/10*	120/10*			
REI 60	110/10*	120/10*	130/10*	140/10*			
REI 90	120/20*	140/10*	140/25	170/25			
REI 120	150/25	160/25	160/35	220/35			
REI 180	180/40	200/45	210/50	270/55			
REI 240	230/55	250/55	270/80	350/60			
* Normally th	te cover require	d by EN 1992-1	-1 will control.				

Note: For the definition of µs see 5.3.2 (3).

Nature of construction and materials		Minimum dimensions excluding any combustible finish for fire resistance of:					
		0.5 h	1 h	1.5 h	2 h	3 h	4 h
Walls with less than 0.4 % reinforcement made from dense	Thickness	150	150	175	<u>-</u>	<u>-</u>	- -
aggregate Walls with 0.4 % to 1.0 %	Thickness	100	120	140	160	200	240
reinforcement made from dense aggregate (concrete density up to 2.4 t ^(m⁰) Walls made from lightweight	Cover•	25	25	25	25	25	25
	Thickness	100	100	115	130	160	190
aggregate (concrete density 1.2 t/m ⁰)*	Cover-	10	20	20	25	25	25
Walls with over 1.0 % reinforcement	Thickness	(See note)	(See note)	100	100	150	180
made from dense aggregate	Cover-	15	15	25	25	25	25
 Cover is expressed here as cover to main reis all reinforcement and these tabulated values For concrete of densities between 1.1 thm² as NOTE Use the minimum practical dimension NOTE. 	c need to be dec ad 2.4 tim ² the	reased accordinates of wall the	agty.		-	as nomin	ual cover t

Table 4.6 — Concrete walls with vertical reinforcement


Method 2 – simplified calculation methods

- Temperature profiles in Annex A
- 500° isotherm method as per Annex B1
- Zone Method as per Annex B2
- Annex E sets out a simplified method for slabs and beams which allows in the case of continuous slabs significant redistibution of moments towards the supports where the rebars are in the top of the beam/slab and obviously significantly cooler
- Gamma factor for concrete $\gamma_M = 1.0$ in EC2 and 1.3 in BS8110
- For rebar gamma factor = 1.0 in both codes

STEEL : Eurocode 3 Part 1-2 Capacity at fire limit state

STEEL : Eurocode 3 Part 1-2

- $\gamma_{M,fi}$ = 1.0 in EC3 (same as BS5950) same as $\gamma_{M,0}$
- Simplified Calculation Methods
 - Calculate "Critical Temperature" based on Utilisation Factor $\mu_0 = E_{fi,d}/R_{fi,d,0}$ or conservatively $= \eta_{fi}[\gamma_{M,fi}/\gamma_{M0}]$ (applicable to restrained beams or tension members only) NA may quote default μ_0 e.g. $\mu_0 = 0.65 > \theta_{a.cr} = 0R$
 - Calculate load bearing resistance at elevated temperature Vs design load at fire limit state
- Advanced Calculation Methods (very little detail)
- External Steelwork (as per Law and O Brien)

STEEL : Eurocode 3 Part 1-2 Critical temperature method

Table 4.1	: Critical tem	perature $\theta_{a,cr}$	for values of	the utilization	factor μ_0
μ0	$\theta_{a,cr}$	μι ₀	$\theta_{a,cr}$	μι ₀	$\theta_{n,cr}$
0,22	711	0,42	612	0,62	549
0,24	698	0,44	605	0,64	543
0,26	685	0,46	598	0,66	537
0,28	674	0,48	591	0,68	531
0,30	664	0,50	585	0,70	526
0,32	654	0,52	578	0,72	520
0,34	645	0,54	572	0,74	514
0,36	636	0,56	566	0,76	508
0,38	628	0,58	560	0,78	502
0,40	620	0,60	554	0,80	496

NOTE: The national annex may give default values for critical temperatures.

STEEL : Eurocode 3 Part 1-2

Critical temperature vs EN13381-4 Test Standard

7.11 Presentation of the Results

An example of a method of presenting the results is given in Table 30:

Table 30: Fire Resistance Classification R30 (30 minutes)										
Design Temp °C	350	400	450	500	550	600	650	700	limit	
A/V		Thickness of material required in mm								
40										
60										
etc to limit										

- The limits on section factor, material thickness and temperature are those determined by Table 26.
- The section factor interval may be varied as required.
- The results may also be presented graphically.

STEEL : Eurocode 3 Part 1-2

Simple

(1) For an equivalent uniform temperature distribution in the cross-section, the increase of temperature $\Delta \theta_{tt}$ in an unprotected steel member during a time interval Δt should be determined from:

$$\Delta \theta_{a,t} = k_{sh} \frac{A_{m}/V}{c_{a} \rho_{z}} \dot{h}_{max} \Delta t$$
(4.25)

where

e. –			
	k sh	is	correction factor for the shadow effect, see (2)
	$A_{\rm m}/V$	is	the section factor for unprotected steel members [1/m];
	A_{m}	is	the surface area of the member per unit length [m²/m];
	V	is	the volume of the member per unit length [m3/m];
	C _a	is	the specific heat of steel, from section 3 [J/kgK];
	\dot{h}_{net}	is	the design value of the net heat flux per unit area [W/m ²];
	Δt	is	the time interval [seconds];
	ρ_{a}	is	the unit mass of steel, from section 3 [kg/m ³].

$$\dot{h}_{\text{net,r}} = \boldsymbol{\Phi} \cdot \boldsymbol{\varepsilon}_{\text{m}} \cdot \boldsymbol{\varepsilon}_{\text{f}} \cdot \boldsymbol{\sigma} \cdot \left[\left(\Theta_{\text{r}} + 273 \right)^4 - \left(\Theta_{\text{m}} + 273 \right)^4 \right]$$

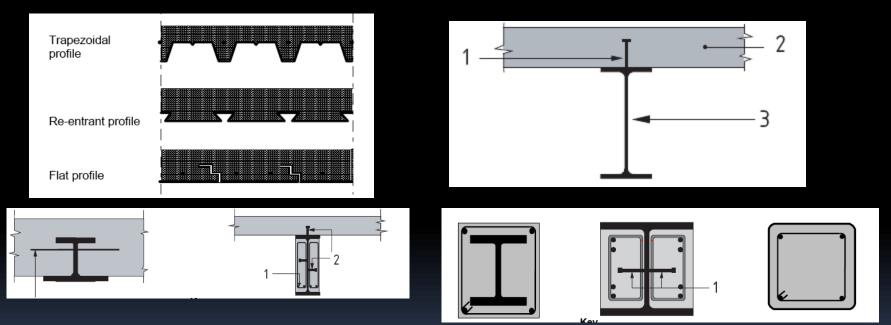
 $\dot{h}_{\text{net,c}} = \alpha_{\text{c}} \cdot (\Theta_{\text{g}} - \Theta_{\text{m}})$

(1) For a uniform temperature distribution in a cross-section, the temperature increase $\Delta \theta_{s,t}$ of an insulated steel member during a time interval Δt should be obtained from:

$$\Delta \theta_{a,t} = \frac{\lambda_p A_p / V}{d_p C_a \rho_a} \frac{(\theta_{g,t} - \theta_{a,t})}{(1 + \phi/3)} \Delta t - (e^{\phi/10} - 1) \Delta \theta_{g,t} \quad (but \Delta \theta_{a,t} \ge 0 \text{ if } \Delta \theta_{g,t} > 0) \quad (4.27)$$

with:

$$\phi = \frac{c_{\rm p} \,\rho_{\rm p}}{c_{\rm a} \,\rho_{\rm a}} d_{\rm p} \,A_{\rm p} /V$$


Advanced e.g. TASEF

COMPOSITE : Eurocode 4 Part 1-2

Scope

COMPOSITE : Eurocode 4 Part 1-2EurocodeBS5950

NOTE: A method is given in D.4 of Annex D for the calculation of the effective thickness h_{eff} .

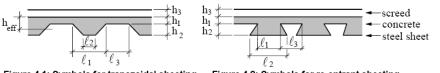


Figure 4.1: Symbols for trapezoidal sheeting Figure 4.2: Symbols for re-entrant sheeting

Table D.6: Minimum effective thickness as a function of the standard fire resistance.

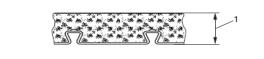
Standard Fire Resistance	Minimum effective thickness h_{eff} [mm]
R 30	60 - h3
R 60	80 - h3
R 90	100 - h ₃
R 120	120 - h3
R 180	150 - h ₃
R 240	175 - h ₃

$$h_{eff} = h_1 + 0.5 \ h_2 \left(\frac{\ell_1 + \ell_2}{\ell_1 + \ell_3} \right)$$
$$h_{eff} = h_1 \left[1 + 0.75 \left(\frac{\ell_1 + \ell_2}{\ell_1 + \ell_3} \right) \right]$$

for
$$h_2/h_1 \le 1,5$$
 and $h_1 > 40$ mm

for
$$h_2/h_1 >$$
 1,5 and $h_1 >$ 40 mm

Key


Kev

1 Insulation thickness (includes screed)

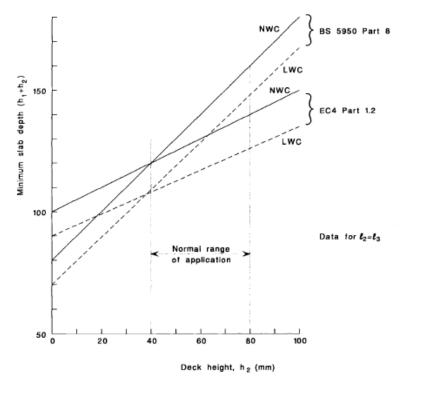
Figure 8 — Insulation thickness for trapezoidal profiled steel sheets

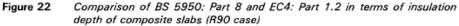
Table 13 — Minimum thickness of concrete for trapezoidal profiled steel sheets (see Figure 8)

Concrete type	Minimum thickness of concrete for a fire resistance period of:										
	30 min	60 min	90 min	120 min	180 min	240 min					
	mm	mm	mm	mm	mm	mm					
Ordinary dense structural concrete	60	70	80	90	115	130					
Lightweight concrete	50	60	70	80	100	115					

1 Insulation thickness (includes screed)

Figure 9 — Insulation thickness for re-entrant profiled steel sheets


Table 14 — Minimum thickness of concrete for re-entrant profiled steel sheets (see Figure 9)


Concrete type	Minimun	n thickness	of concret	e for a fire	resistance	period of:
	30 min	60 min	90 min	120 min	180 min	240 min
	mm	mm	mm	mm	mm	mm
Ordinary dense structural concrete	90	90	110	125	150	170
Lightweight concrete	90	90	105	115	135	150

COMPOSITE : Eurocode 4 Part 1-2

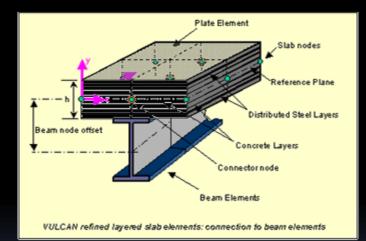
Maurice Johnson & Partners

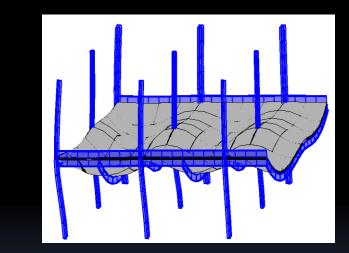
COMPOSITE : Eurocode 4 Part 1-2

DESIGN OPTIONS

- Simple calculation models
- Advanced calculation Models
- Tabular Data for specific cases/structural forms

COMPOSITE : Eurocode 4 Part 1-2 SIMPLE CALCULATION MODELS


- Annex D gives methodology for calculating the moment of resistance (sagging and hogging) of the composite slab when subject to the standard time-temp curve and insulation thickness – similar to SCI P186
- Composite beams without concrete encasement
 - Method 1 Critical Temperature Method (simply supported beams, depth less than 500mm slab, at least 120 thick)
 - Method 2 Bending Moment of Resistance Method
- Partly encased beams and columns


Tabular Data for specific cases

COMPOSITE : Eurocode 4 Part 1-2 ADVANCED CALCULATION MODELS e.g. Vulcan

TIMBER : Eurocode 5 Part 1-2

- Replaces BS5268 Parts 2, 3, 4,5
- Method 1 Residual Section, or
- Method 2 Reduced Properties
- Method 1 is recommended in code
- More complex than BS5268
- Annex E of Code also covers separating elements attributes minutes insulation to various elements of the barrier (somewhat similar to BS5268 Part 4.2)
- Code deals in detail with joints
- Code has charring rates for partly protected timber elements

TIMBER : Eurocode 5 Part 1-2

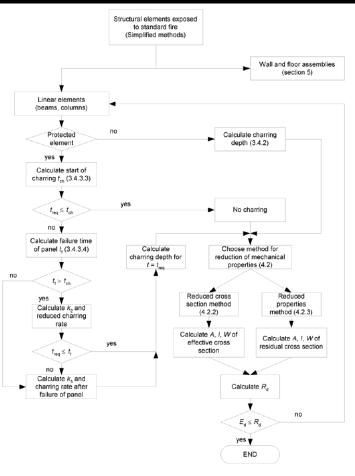
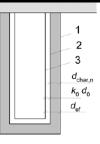


Figure F1 — Flow chart outlining the design procedure to check the load-bearing function of structural members



FIRE SAFETY ENGINEERING CONSULTANTS

TIMBER : Eurocode 5 Part 1-2

Eurocode

	β₀ mm/min	βn mm/min
a) Softwood and beech		
Glued laminated timber with a characteristic		
density of ≥ 290 kg/m ³	0,65	0,7
Solid timber with a characteristic density of ≥ 290 kg/m ³	0,65	0,8
b) Hardwood		
Solid or glued laminated hardwood with a	0,65	0,7
characteristic density of 290 kg/m ³		
Solid or glued laminated hardwood with a	0,50	0,55
characteristic density of ≥ 450 kg/m ³		
c) LVL		
with a characteristic density of \ge 480 kg/m ³	0,65	0,7
d) Panels		
Wood panelling	0,9 ^a	-
Plywood	1,0 ^a	-
Wood-based panels other than plywood ^a The values apply to a characteristic density of 450 k	0,9 ^a	-

Key

- Initial surface of member
- 2 Border of residual cross-section
- 3 Border of effective cross-section

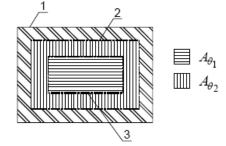
Figure 4.1 — Definition of residual cross-section and effective cross-section

BS5268.4.1

Table 1 — Notional rate of charring for the calculation of residual section

Species	Charring in 30 min	Charring in 60 min
	mm	mm
a) All structural species listed in Appendix A of BS 5268-2:1989 except those noted in items b) and c)	20	40
b) Western red cedar	25	50
c) Hardwoods having a nominal density not less than 650 kg/m ³ at 18 % moisture content	15	30

NOTE Linear interpolation or extrapolation for periods between 15 min and 90 min is permissible.



MASONRY : Eurocode 6 Part 1-2

- Method 1 Tabulated Data
- Method 2 Test Data
- Method 3 Analysis
 - Simplified analysis based on residual section (similar to timber analysis)

 Advanced calculation based on material properties at elevated temperatures

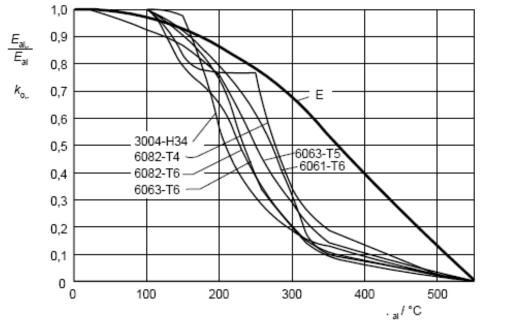
MASONRY : Eurocode 6 Part 1-2

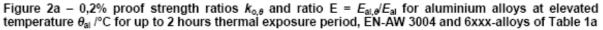
- Draft NA for Public Comment issued on 06 October 2009 until 01 December 2009
- Disallows design by calculation
- Includes tabulated data for various wall types e.g. Eurocode NA **IS325**

Row No.	Material Properties:	Minimum Wall Thickness (mm) t _F For Fire Resistance Classification EI for Time (minutes) t ₆₄								
	Gross Dry Density, p [kg/m ³]	30	60	90	120	180	240			
1	Group 1 units									
	Mortar: General Purpose, th	in layer, lightw	reight							
1.1	Lightweight Aggregate									
	$400 \le \rho \le 1700$									
1.1.1	α ≤ 1,0	90	90	100	100	140	150			
1.1.2	W ⊇ 150	(90)	(90)	(90)	(90)	(100)	(100)			
1.1.3	$\alpha \leq 0.6$	70	75	90	90	100	100			
1.1.4	222 235	(60)	(60)	(75)	(75)	(90)	(90)			
1.2	Dense Aggregate									
	$1200 \le p \le 2400$									
1.2.1	$\alpha \leq 1,0$	90	90	90	100	140	150			
1.2.2		(90)	(90)	(90)	(90)	(100)	(100)			
1.2.3	$\alpha \le 0,6$	75	75	90	90	100	140			
1.2.4	u 20,0	(60)	(75)	(75)	(75)	(90)	(100)			
2	2010020000									
2	Group 2 units									
2.1	Mortar: General Purpose, th Lightweight Aggregate	im layer, lightw	eight							
6-1	$240 \le p \le 1300$									
2.1.1		90	100	100	100	140	150			
2.1.2	$\alpha \le 1,0$	(90)	(90)	(90)	(100)					
2.1.3	0.007700	75	100	100	100	(140)	(140)			
2.1.3	$\alpha \le 0,6$	(75)	(75)	(75)	(90)	(100)	140 (125)			

Masonry unit type	Finishes	Minimum thickness (mm), excluding any finish, for a fire resistance of (hours)									of	_	
					bearing					Non-l	oadbea	ring 3 140 100 90 125 90 75 170 90 170	-
	None	1/2	1	11/2	2	3	4	1/2	1	11/2	2	3	4
	Masonry finished with 13 mm	90	90	100	100	-	-	50	75	90	100	140	1
Blocks, dense concrete ¹ Blocks, lightweight concrete ² & calcium silicate ³ Bricks, frod	thickness cement/sand render.	-	-	-	-	-	~	50	75	90	90	100	1
	Masonry finished with 13 mm thickness lightweight aggregate gypsum plaster	90	90	90	90	100	-	50	75	75	75	90	
	None	90	90	100	100	140	150	50	75	75	75	125	
	Masonry finished with 13 mm thickness cement/sand render.	-	-		-	-	-	50	75	75	75		1
	Masonry finished with 13 mm thickness lightweight aggregate gypsum plaster	90	90	90	90	100	-	50	50	63	75	75	
	None	90	90	100	100	190	190	75	75	90	100	170	-
& calcium	Masonry finished with 13 mm thickness lightweight aggregate gypsum plaster	90	90	90	90	100	-	75	75	90	90		
Bricks, fired	None	90	90	100	100	170	170	75	75	90	100	170	
Jay	Masonry finished with 13 mm thickness lightweight aggregate gypsum plaster	90	90	90	90	100	-	75	75	90	90	90	

Table 16a Solid masonry walls* exposed to fire from one side at a time


*Solid masonro walls include walls -----



ALUMINIUM : Eurocode 9 Part 1-2

Very similar in content and presentation to the steel code

CHILDRENS HOSPITAL OF IRELAND (MATER SITE)

700M EURO 110,000SQM TO START 2011 DESIGN BUILD

TIME EQUIVALENT

FEL STRUCTURAL RESPONSE MODELLING

CHILDRENS HOSPITAL OF IRELAND (MATER SITE)

PARKWAY DISTRICT CENTRE LIMERICK

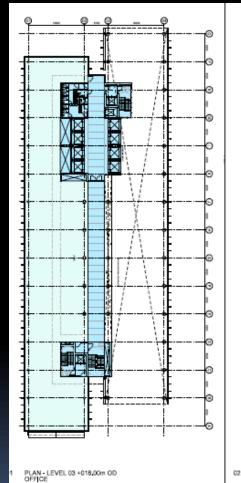
100,000 m² Shopping centre

-Structural steel frame with composite metal deck floor and composite beams

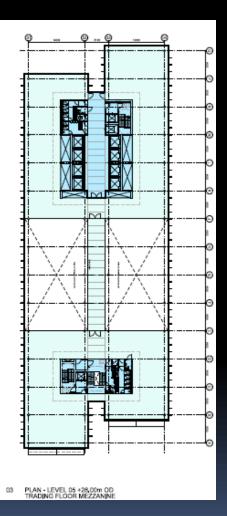
- -Floor removed oversized columns
- -BS9999 reduced ratings

-FEL analysis of composite slabs/beams

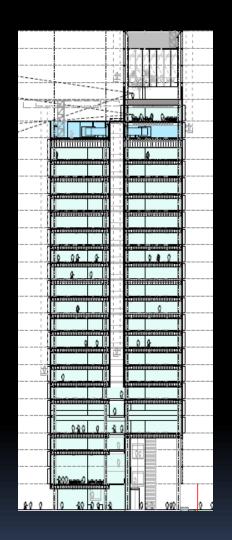
PARKWAY DISTRICT CENTRE LIMERICK


AIBCM PROJECT





AIBCM PROJECT



AIBCM PROJECT

-AIBCM

- DESIGN FIRE LOAD DEDUCED FROM BS9999
- SMALL, MEDIUM AND LARGE ROOM FIRES
- PARAMETRIC FIRE CURVES TO EC1
- VULCAN ANALYSIS OF COMPOSITE FLOORS/FRAMES
- COLLONADE COLUMNS EXTERNAL ELEMENTS

CENTRAL BANK - DUBLIN

CONCLUDING COMMENTS

Thank you kindly for your attention and I hope you have gained some insight into the Eurocodes for Fire from my talk. I also thank IBCI for inviting me to make this presentation today

Manie Gohwon

